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Abstract

The effects of viscous dissipation and temperature dependent viscosity in both thermally and simultaneously developing laminar flows
of liquids in straight microchannels of arbitrary, but constant, cross-sections are studied. In order to allow a parametric investigation,
viscosity is assumed to vary linearly with temperature, while the other fluid properties are held constant. Different cross-sectional geom-
etries are considered, chosen among those usually adopted for microchannels. Reference is made to uniform wall temperature boundary
conditions. A finite element procedure is employed for the solution of the parabolized momentum and energy equations. Computed axial
distributions of the local Nusselt number and of the apparent Fanning friction factor for ducts of the considered cross-sections are pre-
sented with reference to both heating and cooling conditions. Numerical results confirm that, in the laminar forced convection in straight
microchannels, both temperature dependence of viscosity and viscous dissipation effects cannot be neglected in a wide range of operative
conditions.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In laminar flows in microchannels, fluid velocity and
temperature fields do not very often develop simulta-
neously since fluid heating or cooling may begin at an axial
position which does not coincide with the microchannel
inlet. In general, heating or cooling will start at an axial
location where the flow, from a hydrodynamic point of
view, is only partially developed, with a virtually infinite
number of possible combinations. However it can be con-
fidently assumed that most situations of practical interest
will fall between the two limiting cases corresponding to
thermally developing flow (when heating or cooling begins
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at a position along the microchannel where hydrodynami-
cally fully developed conditions have already been reached)
and simultaneously developing flow (when heating or cool-
ing begins at the microchannel inlet). In all these cases,
entrance effects on forced convection heat transfer cannot
be neglected if, as it happens very often in laminar flows,
the total length of the heated/cooled part of the microchan-
nel is comparable with that of the entrance region. More-
over, temperature dependence of fluid properties can also
play an important role in the development of the thermal
field, modifying both heat fluxes and velocity distributions.
If, as it is assumed in this paper, the fluid is a liquid, viscos-
ity is the property which exhibits the most relevant varia-
tions with respect to temperature. Therefore, the main
effects of temperature dependent fluid properties can be
retained even if only viscosity is allowed to vary with tem-
perature, while the other properties are assumed constant.
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Nomenclature

A area of the cross-section (m2)
a height of the cross-section (m)
Br Brinkman number, Br ¼ l�u2=½kðte � twÞ�
b base of the cross-section (m)
c specific heat (J/kg K)
Dh hydraulic diameter (m)
f Fanning friction factor (–)
h convection coefficient (W/m2 K)
k thermal conductivity (W/m K)
Nu Nusselt number, Nu = hDh/k
P perimeter of the cross-section (m)
Pt heated/cooled perimeter (m)
Pe Péclet number, Pe = RePr

Pr Prandtl number, Pr = lc/k
p deviation from the hydrostatic pressure (Pa)
q 0 heat transfer rate per unit length (W/m)
q00 heat flux (W/m2)
Re Reynolds number, Re ¼ q�uDh=l
r radial coordinate (m)
T dimensionless temperature,

T = (t � tw)/(te � tw)
T 0 dimensionless temperature,

T 0 = (t � tw)/(tb � tw)
t temperature (�C)
U dimensionless axial velocity, U ¼ u=�u

u,v,w velocity components (m/s)
X+ dimensionless axial coordinate, X+ = x/Dh Rem

X* dimensionless axial coordinate, X* = x/DhPe

x axial coordinate (m)
y,z transverse Cartesian coordinates (m)

Greek symbols

a parameter in Eq. (14) (kg/m s K)
b parameter in Eq. (15) (K�1)
c aspect ratio of the cross-section, c = a/b
l dynamic viscosity (kg/m s)
q density (kg/m3)

Subscripts and superscripts

A in axisymmetric coordinates
a apparent
b bulk
C in Cartesian coordinates
c constant property
e entrance
m reference, evaluated at tm

o outer
w wall
� average value
1 asymptotic value
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It must be pointed out that, in such a case, dependence of
viscosity on temperature influences the thermal field by
modifying the velocity distribution in the heated/cooled
part of the channel. Finally, viscous dissipation effects can-
not often be neglected in ducts with very small hydraulic
diameters, like microchannels, even for ordinary liquids,
characterised by moderate values of viscosity. It is worth
noting that, with temperature dependent viscosity, viscous
dissipation modifies both temperature and velocity distri-
butions along the whole microchannel, in much the same
way as wall heat transfer does. Even if these effects have
already been considered in the past, to the authors’ knowl-
edge no systematic studies are reported in the literature
taking into account the combination of entrance, tempera-
ture dependent viscosity and viscous dissipation effects.

In the past decades, many authors have investigated,
either analytically or numerically, both thermally develop-
ing flows and simultaneously developing flows in straight
ducts of constant cross-section. Comprehensive reviews of
these theoretical studies, referring to ducts of different
cross-sectional geometries, can be found in Shah and Lon-
don (1978) and Shah and Bhatti (1987). However, since a
basic assumption made in almost all such studies is that
fluid properties are constant, the corresponding solutions
are adequate only for problems involving small tempera-
ture differences. In fact, experimental results for problems
involving large temperature differences substantially devi-
ate from constant property solutions (Shah and London,
1978; Kakaç, 1987).

As anticipated above, for most liquids, the density, spe-
cific heat and thermal conductivity are nearly independent
of temperature, while viscosity markedly decreases with
increasing temperature, in much the same manner as the
Prandtl number does (Kakaç, 1987). Thus, the assumption
of constant properties, with the exception of viscosity,
which is still allowed to vary with temperature, is adequate
for most liquid flows, no matter how large the temperature
differences are. Because of the relative complexity of tem-
perature dependent property problems, only a limited num-
ber of such solutions for laminar forced convection in both
thermally and simultaneously developing flows in ducts
have appeared in the literature (Shah and London, 1978).
However, most of these studies are based on the assump-
tion of a viscosity dependence on temperature given by spe-
cific relations of empirical nature (Kakaç, 1987; Nouar,
1999; Nóbrega et al., 2004), leading to results which cannot
be considered general and applicable to other liquids or for
different temperature ranges. Similar considerations can be
made with respect to studies concerning thermally or simul-
taneously developing flows in microchannels (Toh et al.,
2002; Xu et al., 2003; Koo and Kleinstreuer, 2004a; Koo
and Kleinstreuer, 2004b). To allow a generalization of
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the results, Berardi and Cuccurullo (2000) and Sahin (1999)
assumed a linear viscosity–temperature relation. It is worth
noting that a linear temperature dependence of viscosity
can always be obtained by approximating the appropriate
relation by a Taylor series expansion truncated at the first
order term (Berardi and Cuccurullo, 2000).

In laminar flows in macrochannels, except for the case
of very viscous fluids at relatively high velocity, viscous
dissipation effects can be ignored (Shah and London,
1978; Morini, 2005a; Shen et al., 2004; Cuccurullo and
Berardi, 2000), since their contribution to the energy bal-
ance is negligible (Shen et al., 2004). Therefore, viscous
dissipation effects in laminar forced convection are usually
studied only with reference to very high Prandtl number
fluids, for which hydrodynamically fully developed condi-
tions can be reasonably assumed at the entrance. For this
reason, almost all existing studies concern fully developed
forced convection (Barletta, 1997) or thermally developing
and hydrodynamically fully developed flows (Lin et al.,
1983; Basu and Roy, 1985; Zanchini, 1997). Since, in all
these studies, the assumption of a constant property fluid
is made, the velocity profile is assumed to remain the same
along the whole channel length. Instead, viscous dissipa-
tion effects cannot be ignored in microchannel flows of
ordinary fluids, having Prandtl numbers of the order of
few units, due to the very small values of the hydraulic
diameter (Morini, 2005a; Morini, 2005b; Shen et al.,
2004; Koo and Kleinstreuer, 2003; Herwig and Hausner,
2003; Tso and Mahulikar, 1998). For such fluids, hydrody-
namic and thermal entrance lengths are comparable, so
that it is reasonable to assume either fully developed or
uniform velocity profiles at the entrance of the heated/
cooled part of the microchannel, resulting in thermally
developing and hydrodynamically fully developed flow or
in simultaneously developing flow, respectively. Therefore,
existing literature on viscous dissipation effects in micro-
channels does not only consider fully developed forced
convection (Morini, 2005a; Morini, 2005b; Shen et al.,
2004) and thermally developing and hydrodynamically
fully developed flow (Koo and Kleinstreuer, 2004a; Koo
and Kleinstreuer, 2004b; Tunc and Bayazitoglu, 2001),
but also simultaneously developing flow (Toh et al.,
2002; Xu et al., 2003). It must be pointed out that if, as
in most of these studies, a temperature dependent viscosity
is assumed, the velocity distribution varies in the thermal
entrance region even when a fully developed velocity pro-
file is assumed at the axial position where fluid heating/
cooling begins. However, this fully developed velocity pro-
file depends both on viscous dissipation, which is responsi-
ble for the non-uniform fully developed temperature
profile, and on temperature dependence of viscosity,
which, in turn, distorts the velocity profile with respect
to the constant property case.

In this paper, we present the results of a parametric
study on both thermally and simultaneously developing
laminar flows of liquids in straight microchannels of arbi-
trary, but constant, cross-sections. The effects of tempera-
ture dependent viscosity and viscous dissipation on heat
transfer and pressure drop are investigated, while the other
liquid properties are considered constant. A finite element
procedure (Nonino et al., 1988), based on a projection
algorithm (Patankar and Spalding, 1972), is employed for
the step-by-step solution of the parabolized momentum
and energy equations in a two-dimensional domain corre-
sponding to the cross-section of the duct (Patankar and
Spalding, 1972; Hirsh, 1988). Due to the high value of
the ratio between the total length and the hydraulic diam-
eter in microchannels, such an approach is very advanta-
geous with respect to the one based on the steady-state
solution of the elliptic form of the governing equations in
a three-dimensional domain corresponding to the whole
microchannel. The procedure has already been used, disre-
garding viscous dissipation effects, in the simulation of
simultaneously developing flows of liquids with tempera-
ture dependent viscosity in straight macro- and microchan-
nels (Nonino et al., 2005a; Nonino et al., 2005b). Here, the
procedure is also validated for non-negligible viscous dissi-
pation effects with reference to thermal entrance flow of a
constant property fluid in circular ducts (Basu and Roy,
1985). New results concern different cross-sectional geome-
tries, chosen among those usually adopted for microchan-
nels (Morini, 2005a; Morini, 2005b), namely circular,
rectangular with aspect ratio c = 0 (parallel plates) and
trapezoidal with c = 0.414. In all the cases studied here, ref-
erence is made to uniform wall temperature boundary con-
ditions and, in order to allow a parametric investigation,
viscosity is assumed to vary linearly with temperature in
the range considered.

2. Mathematical model

When the effects of axial diffusion can be neglected and
there is no recirculation in the longitudinal direction,
steady-state flow and heat transfer in straight microchan-
nels of constant cross-section are governed by the continu-
ity and the parabolized Navier–Stokes and energy
equations. Since the inverse of the Reynolds number is rep-
resentative of the relative importance of diffusive and
advective components of the axial momentum flow rate,
while the inverse of the Péclet number is representative of
the relative importance of conductive and advective com-
ponents of the axial heat flow rate, the parabolic approxi-
mation of the Navier–Stokes and energy equations can be
considered adequate, except in the immediate neighbor-
hood of the inlet, for values of the Reynolds and Péclet
numbers larger than 50 (Shah and London, 1978; Javeri,
1977). With reference to incompressible fluids with temper-
ature dependent thermophysical properties, in the hypoth-
eses of negligible body forces and significant effects due to
viscous dissipation, these equations can be written in the
following forms, valid for three-dimensional and axisym-
metric geometries, respectively.

For three-dimensional geometries, the governing equa-
tions are
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According to the assumption of parabolic flow, all the
derivatives in the axial direction are neglected in the diffu-
sive terms of the above equations (Hirsh, 1988). In the set
of equations valid for three-dimensional geometries, x, y

and z are the axial and the transverse coordinates, respec-
tively, while u, v and w represent the axial and the transverse
components of velocity. In the axisymmetric equations,
symbols r and v denote the radial coordinate and the radial
component of velocity. Finally, t is the temperature, p is
the deviation from the hydrostatic pressure, �p is its average
value over the cross-section, while q, l, c and k represent
density, dynamic viscosity, specific heat and thermal con-
ductivity of the fluid, respectively.

The solution domain can be bounded by rigid walls or
symmetry axes. The usual no-slip conditions are applied
on rigid boundaries, that is, u = v = w = 0 for three-dimen-
sional geometries and u = v = 0 in the axisymmetric case,
while the temperature is prescribed (t = tw). Symmetry con-
ditions, instead, are ou/oy = ow/oy = 0, v = 0 and ot/
oy = 0 on boundaries perpendicular to the y axis, ou/
oz = ov/oz = 0, w = 0 and ot/oz = 0 on boundaries perpen-
dicular to the z axis for three-dimensional geometries, and
ou/or = 0, v = 0 and ot/or = 0 at the symmetry axis in axi-
symmetric problems.

The model equations are solved using a finite element
procedure which represents an extended version of the
one previously developed for the analysis of the forced con-
vection of constant property fluids in the entrance region of
straight ducts (Nonino et al., 1988). The added new fea-
tures mainly consist in the possibility of taking into
account the effects of temperature dependent properties
and of viscous dissipation. The adopted procedure is based
on a segregated approach which implies the sequential
solution of the momentum and energy equations on a
two-dimensional domain in the case of three-dimensional
geometries and on a one-dimensional domain in axisym-
metric problems. A marching method is then used to move
forward in the axial direction of the microchannel. The
pressure–velocity coupling is dealt with using an improved
projection algorithm already employed by one of the
authors (C.N.) for the solution of the Navier–Stokes equa-
tions in their elliptic form (Nonino, 2003).

Most of the features of the adopted solution algorithm
and of the finite element discretization procedure can be
found in Nonino et al. (1988), where reference is made to
a constant property fluid and to the dimensionless forms
of the governing equations. Since this description can be
easily adapted to the case of a fluid with temperature
dependent properties considered here, only the details con-
cerning the estimation of the average pressure gradient
d�p=dx, which is necessary to solve the momentum equation
in the axial direction, are reported in this paper. With ref-
erence to the flow in straight ducts, integration of the axial
momentum equation over the cross-section A gives (Shah
and London, 1978; Nonino et al., 1988)
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In the previous equation P is the perimeter of the cross-sec-
tion and n denotes the direction of the outer normal to the
boundary, while of K and L represent the axial momentum
rate and the wall viscous force per unit length, respectively,
referred to the unit area of the cross-section. Their defini-
tions can be directly inferred from the above equation. In
the marching procedure from the nth to the (n + 1)th axial
locations, the following approximation for the average
pressure gradient is used
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where the asterisk (*) indicates an estimated value. The
backward formula employed in Eq. (13) for the evaluation
of (dK/dx)* has been adopted to increase stability since we
observed that more accurate second order approximations
very often led to the divergence of the simulations. How-
ever, it must be pointed out that this choice does not affect
the overall accuracy of the numerical results if, as will be
detailed later, very small axial steps are adopted where
the variations of the axial pressure gradient are significant,
that is, in the region very close to the duct entrance.

3. Numerical results

The laminar forced convection in the heated/cooled part
of straight microchannels of constant cross-sections with
uniform wall temperature tw is studied in this paper. The
hypotheses made here are that viscous dissipation effects
are not negligible and that viscosity varies with tempera-
ture, while all the other thermophysical properties are con-
stant. As already pointed out in the Introduction, in many
cases, fluid velocity and temperature fields in microchan-
nels do not develop simultaneously, resulting in non-over-
lapping hydrodynamic and thermal entrance regions. A
broad range of situations of practical interest can be
described with reference to the scheme reported in Fig. 1,
where it is assumed that the fluid enters the microchannel
at uniform velocity ue and temperature te, and that the
walls of the first part (of length L0) of the duct are main-
tained at the same temperature te. Then, the wall tempera-
ture exhibits a step change from te to tw at the axial
position where liquid heating/cooling begins (x = 0). The
two limiting situations are considered here: (i) thermally
developing and hydrodynamically fully developed flow
and (ii) simultaneously developing flow. In the first case,
L0 is larger than the axial distance necessary to allow the
flow to reach fully developed conditions. Therefore,
because of viscous heating, at the entrance of the heated/
cooled part of the microchannel a non-uniform distribu-
tion of temperature t is obtained, with t � te > 0 every-
where on the cross-section, except on the contour, where
t � te = 0. This causes a viscosity variation over the
cross-section, which, in turn, influences the velocity profile.
As a consequence, for each combination of cross-sectional
geometry, characteristics of viscosity variations with tem-
perature and Brinkman number, the appropriate velocity
and temperature distributions to be specified as inlet condi-
heating / cooling

x = 0
te

te

te tw

tw

x

L0

ue

Fig. 1. General scheme for the application of thermal boundary
conditions.
tions at x = 0 have been determined by means of prelimin-
ary numerical simulations. It must be pointed out that the
alternative assumption that the first part of the microchan-
nel is adiabatic would make the problem undetermined. In
fact, in such a case, due to the combined effects of viscous
heating and temperature dependent viscosity, the length L0

would always influence temperature and velocity profiles at
the axial position where fluid heating/cooling begins, and
the flow could not reach fully developed conditions, no
matter how large L0 is. Instead, in the second case, i.e.,
in simultaneously developing flows, fluid heating/cooling
begins at the microchannel inlet, where the velocity field
also starts to develop. This means that L0 is equal to 0
and that the liquid enters the channel with a uniform tem-
perature te and a uniform velocity ue equal to the average
axial velocity �u.

The dynamic viscosity is assumed to vary with tempera-
ture and le and lw are its values at te and tw, respectively.
The ratio of le over lw gives an indication of the relevance
of the temperature dependence of viscosity in the range
between te and tw. While it is true that exponential (or mod-
ified Arrhenius type) relations are usually employed to rep-
resent the temperature dependence of viscosity, the linear
variation (Berardi and Cuccurullo, 2000; Sahin, 1999)
adopted in this paper is much simpler to deal with in the
context of a systematic study and represents an acceptable
approximation if the ratio of maximum to minimum values
of viscosity is not too large. To strengthen this argument,
we show in Fig. 2 the graphical representation of the linear
relation

l ¼ lw þ aðt � twÞ ð14Þ
and of a widely used exponential formula (Kakaç, 1987)

l ¼ lw exp½�bðt � twÞ� ð15Þ
for the values of le/lw in the range between 1/2 and 2 con-
sidered in this paper. In Eqs. (14) and (15), a and b are
3

1
2

w

T

0.0

0.5

 0  0.2  0.4  0.6  0.8  1

Fig. 2. Graphical representation of linear and exponential viscosity–
temperature relations for different values of le/lw. Solid lines: linear
relation; dotted lines: exponential relation.
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parameters defined as a = (le � lw)/(te � tw) and b =
�(dl/dt)/l = const., respectively, while the dimensionless
temperature appearing in Fig. 2 is defined as T = (t �
tw)/(te � tw). As can be seen, the linear relation represents
a reasonably good approximation of the exponential one
for the values of le/lw considered here.

It is worth noting that, since all the other thermophysical
properties are assumed constant, we have le/lw = Pre/
Prw = Rew/Ree. Moreover, while the local Reynolds number
Re ¼ q�uDh=l and the local Prandtl number Pr = lc/k
depend on temperature, the local Péclet number Pe =
RePr = Ree Pre = Rew Prw always has the same value. As
the viscosity of liquids decreases with increasing tempera-
ture, Pre/Prw > 1 corresponds to fluid heating (te < tw) and
Pre/Prw < 1 to fluid cooling (te > tw), while Pre/Prw = 1
refers to isothermal flows (te = tw) or to constant viscosity
fluids. The reference Brinkman number Brm ¼ lm�u2=
½kðte � twÞ� is negative for fluid heating and positive for fluid
cooling. In all the computations, the same values Rem ¼
q�uDh=lm ¼ 500 and Prm = lm c/k = 5 of the Reynolds and
Prandtl numbers at the reference temperature of the fluid
tm = (te + tw)/2 have been assumed. The corresponding
value of the Péclet number Pe is 2500. Therefore, for the
values of the ratio Pre/Prw = 1/2, 2/3, 1, 3/2 and 2 considered
here, minimum and maximum values of the local Reynolds
number in the temperature range between te and tw are 375
and 750, respectively, while the Prandtl number can vary
between 3:�3 and 6:�6. In addition to Brm = 0, corresponding
to negligible viscous dissipation, reasonable non-zero values
of the reference Brinkman number have been selected,
namely, Brm = ±0.001, ±0.01 and ±0.1. In the following,
numerical results concerning axial distributions of the local
Nusselt number Nu = h Dh/k and of the apparent Fanning
friction factor fa are presented. The local convection coeffi-
cient h, averaged over the heated/cooled perimeter of the
cross-section, can be computed as

h ¼ q0w
P tðtb � twÞ

ð16Þ

for three-dimensional geometries, and as

h ¼ q00w
tb � tw

ð17Þ

for axisymmetric geometries. In the above equations, q0w
and q00w are the wall heat transfer rate per unit length and
the wall heat flux, respectively, Pt is the heated/cooled
perimeter of the cross-section and tb is the bulk tempera-
ture. The apparent Fanning friction factor is defined as
(Shah and London, 1978)

fa ¼
ð�pe � �pÞDh

2q�u2x
ð18Þ

It must be pointed out that, even if the numerical results re-
ported in the following have been obtained for Rem = 500
and Prm = 5, they are much more general that what they
appear to be. In fact, for a given reference Prandtl number
Prm, the axial distributions of Nu and fa Rem are independent
of the reference Reynolds number Rem, provided that the
appropriate dimensionless axial coordinates X* = x/DhPe

and X+ = x/DhRem are employed. Moreover, the influence
of the reference Prandlt number Prm on Nu and faRem

distributions is significant only in the first part of the micro-
channel, i.e., near the entrance. The validity of the above state-
ments, which is well established for constant property fluids,
has been verified, by means of sample numerical tests, also
under the variable viscosity assumption in the ranges 1/26
le/lw 6 2, 2506 Rem 6 1000 and 2 6 Prm 6 20.

Three different cross-sectional geometries are considered
in this study, namely circular, rectangular with aspect ratio
c = a/b = 0 (parallel plate channel) and trapezoidal with
c = a/b = 0.414; the latter corresponds to an isosceles tra-
pezium with the larger base b and height a and a 54.74�
angle between sides and larger base (Morini, 2005b; Non-
ino et al., 2005b). Computational domains have been
defined taking into account existing symmetries. Therefore,
the circular cross-section corresponds to a one-dimensional
axisymmetric domain of length ro, the rectangular cross-
section with c = 0 to a rectangle of unit base and height
a/2, and the trapezoidal cross-section to the two-dimen-
sional domain of larger base b/2 and height a, equal
to one half of the whole cross-section. One-dimensional
domains have been discretized by means of three-node
parabolic elements, while two-dimensional ones have been
subdivided into 9-node Lagrangian parabolic elements. A
total of 50 elements and 101 nodal points have been used
in the discretization of the 1-D domain corresponding to
the circular cross-section, and a total of 50 elements and
303 nodal points in that of the 2-D domain corresponding
to the rectangular cross-section with c = 0. Instead, to give
comparably accurate results, a mesh of 12,000 elements
and 48,441 nodal points has been used for the trapezoidal
cross-section. Element sizes gradually increase with increas-
ing distance from the walls. The minimum and maximum
values of the dimensionless distances between adjacent
nodes Dy/Dh and Dz/Dh, or Dr/Dh, measured in the trans-
verse or in the radial directions, respectively, are reported
in Table 1 for the three cross-sectional geometries consid-
ered. The adopted meshes are fine enough near the walls
to allow an accurate representation of the steep velocity
and temperature gradients taking place there as the flow
develops. Of course, preliminary tests had been carried
out to verify that all these discretizations are fine enough
to give mesh-independent results. In all the computations,
the axial step has gradually been increased from the starting
value Dx/Dh = 0.0001 to the maximum value Dx/Dh = 0.05.
As the initial value of the axial step is very small, the strong
variations of the axial pressure gradient arising in the first
part of the microchannel can be adequately captured.

3.1. Validation of the procedure

The procedure outlined in the previous section and
employed for the numerical simulations has already been
validated, on the assumptions of constant property fluid
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Table 1
Minimum and maximum values of the dimensionless distances between adjacent nodes Dy/Dh and Dz/Dh, or Dr/Dh, in the finite element meshes employed
for the numerical simulations

Cross-section Dymin/Dh or Drmin/Dh Dzmin/Dh Dymax/Dh or Drmax/Dh Dzmax/Dh

Circular 0.0002 – 0.0082 –
Parallel plates 0.0001 – 0.0041 –
Trapezoidal 0.0002 0.0001 0.0070 0.0063
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and negligible viscous dissipation, by comparing heat trans-
fer and pressure drop results with existing literature data for
laminar simultaneously developing flows in straight chan-
nels, both three-dimensional and axisymmetric (Nonino
et al., 1988; Nonino et al., 2005a; Nonino et al., 2005b).
In order to assess the accuracy of the present computations,
additional validation tests have been carried out. Asymp-
totic values of the Nusselt number (Nu1)c and fully devel-
oped values of the Poiseuille number (fRe)c for a constant
property fluid are compared here with available literature
data. For circular microchannels, the computed values
(Nu1)c = 3.65680 and 9.60000 for Br = 0 and Br 5 0,
respectively, are in excellent agreement with the corre-
sponding literature values (Nu1)c = 3.65679 and 48/5 =
9.6 (Shah and London, 1978; Barletta, 1997; Zanchini,
1997). The same result is obtained for parallel plate micro-
channels with negligible viscous dissipation, for which the
computed and the literature values are (Nu1)c = 7.54075
and 7.54070, respectively (Shah and London, 1978). Com-
puted fully developed values of the Poiseuille number
(fRe)c = 16.0000, 24.0000 and 14.0555 for circular, parallel
plate and trapezoidal microchannels, respectively, are
almost coincident with the corresponding literature values
(fRe)c = 16, 24 and 14.053 (Shah and London, 1978; Mor-
ini, 2005b). Moreover, the procedure is also validated here
on the assumption of non-negligible viscous dissipation,
with reference to thermally developing and hydrodynami-
cally fully developed flows of constant property fluids in cir-
cular ducts, for which an analytical solution exists (Basu
and Roy, 1985).

As in Basu and Roy (1985), a fully developed (parabolic)
axial velocity profile u ¼ 2�u½1� ðr=roÞ2� and a uniform
temperature profile t = te are assumed at the inlet of a cir-
cular duct of outer radius ro, while a uniform temperature
tw is imposed at the duct wall. The axial velocity profile is
assumed to remain the same along the whole duct length,
while, due to heat transfer and viscous dissipation, the tem-
perature profile changes with the axial position until ther-
mally developed flow conditions are reached. In our
calculations, fluid properties and flow parameters are
assumed to yield the values Re = 500 and Pr = 5 of the
Reynolds and Prandtl numbers, respectively. Three values
of the Brinkman number Br = 0.001, 0.1 and 1 are consid-
ered here among those of Basu and Roy (1985), to account
for reasonable viscous dissipation effects. Axial distribu-
tions of computed Nusselt number Nuc are always in very
good agreement with the analytical results of Basu and
Roy (1985), as can be seen in Fig. 3.
Finally, axial distributions of computed (faRe)c for
developing constant property flows in circular and parallel
plate ducts are compared in Fig. 4 with available literature
data from Shah and London (1978). The distribution of
(faRe)c for flows in the trapezoidal ducts considered in this
paper, for which no comparison data are available in the
literature, is also reported in Fig. 4 for the sake of
completeness.
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3.2. Heat transfer results

The influence of viscous dissipation on the local Nusselt
number is illustrated in Fig. 5, where numerical results
concerning axial distributions of Nuc for constant prop-
erty flows (Pre/Prw = 1) with different Brinkman numbers
are presented for both thermally developing flows and
simultaneously developing flows. As expected, for a
given cross-sectional geometry, the same asymptotic value
(Nu1)c is reached for fully developed conditions with
any non-zero value of Brm, both in thermally developing
flows and in simultaneously developing flows, while Brm

strongly affects the Nusselt number in the intermediate
range of X*. The influence of Brm is also significant for
very low values of X*, where, for simultaneously develop-
ing flows, the values of Nuc are always lower than those
corresponding to Brm = 0 if Brm < 0 (fluid heating), and
higher if Brm > 0 (fluid cooling). For thermally developing
flows in microchannels of circular and trapezoidal cross-
sections, the curves for Brm 5 0 cross each other and
the one for Brm = 0. As expected, for all the geometries
the curves pertaining to thermally developing flows with
Brm = 0 lie under the corresponding ones for simulta-
neously developing flows, while, because of the above
mentioned curve crossing, this is not always true for
Brm 5 0.

The effects of temperature dependent viscosity on the
local Nusselt number are illustrated in Figs. 6–8, where
axial distributions of the ratio Nu/Nuc for microchannels
of different cross-sections are presented. As can be seen,
the ratio Pre/Prw significantly affects the Nusselt number
as long as the flow develops, while its influence is rather
small when fully developed conditions are reached. Obvi-
ously, in the first part of the microchannel the differences
between the results obtained for thermally developing
flows and for simultaneously developing flows are also
more appreciable. For very low values of X*, the curves
of Nu/Nuc are nearly horizontal, at least for circular and
trapezoidal cross-sections, and exhibit deviations from
unity larger for thermally developing flows than for simul-
taneously developing flows. Then, for intermediate values
of X*, except for the case of fluid heating (Pre/Prw > 1)
with jBrmj = 0.1, all the curves tend to converge towards
unity. It must be observed that the very high values of
the ratio Nu/Nuc found at intermediate X* for heating
are not very significant, since they are simply due to a
moderate axial shifting of curves representing axial distri-
butions of Nu with respect to the constant property ones
reported in Fig. 5. By comparing the axial distributions
of Nu/Nuc for the same cross-sectional geometry, but for
different Brinkman numbers Brm, it can be seen that, both
in thermally developing flows and in simultaneously devel-
oping flows, the influence of temperature dependent vis-
cosity is more evident than the one due to viscous
dissipation.

Moreover, for a given jBrmj, liquid heating (Brm < 0 and
Pre/Prw > 1) and liquid cooling (Brm > 0 and Pre/Prw < 1)
lead to the same asymptotic value of the ratio Nu/Nuc pro-
vided that the corresponding values of the ratio Pre/Prw are
reciprocal to each other, i.e., the liquid exhibits the same
variation of viscosity in the temperature range between te
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and tw. On the basis of Eqs. (16) and (17), this implies that
fully developed profiles of the absolute values of the dimen-
sionless temperature T 01 ¼ ½ðt � twÞ=ðtb � twÞ�1 are the
same for both heating and cooling. This also implies that
fully developed profiles of the axial velocity are equal for
liquid heating and liquid cooling, so that the term Uv,
defined in Eqs. (6) and (11), has the same distribution over
the cross-section in both cases.
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3.3. Pressure drop results

The combined effects of temperature dependent viscosity
and of viscous dissipation on pressure drop are illustrated
in Figs. 9–11 for both thermally developing flows and
simultaneously developing flows with different values of
Brm and of Pre/Prw. In these figures, axial distributions
of the ratio faRem/(faRem)c are reported for the three
cross-sectional geometries considered. It must be pointed
out that, for thermally developing flows of constant prop-
erty fluids, (faRem)c coincides with (fRe)c, since there is no
evolution of the velocity profile along the heated/cooled
part of the duct. For all the geometries considered here,
the values of (fRe)c have already been reported in subsec-
tion 3.1, while axial distributions of (faRem)c, coincident
with (faRe)c, for developing flows have been presented in
Fig. 4. It is apparent in Figs. 9–11 that, as expected,
faRem/(faRem)c is always larger than 1 for fluid cooling
(Pre/Prw < 1 and Brm > 0) and smaller than 1 for fluid
heating (Pre/Prw > 1 and Brm < 0). In fact, in the first case
the pressure drop is higher than the one corresponding to
the flow of a constant property fluid, due to the higher val-
ues of viscosity in the near wall region (lw > lm), while the
opposite occurs in the second case (lw < lm). For each
combination of Brm and Pre/Prw, the curves for thermally
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developing flows and those pertaining to simultaneously
developing flows approach the same asymptotic value
since, far enough from the microchannel entrance, velocity
and temperature profiles are the same, independently of the
inlet conditions. Moreover, asymptotic values [faRem/
(faRem)c]1 of the ratio faRem/(faRem)c for Br = 0 only
depend on Pre/Prw, no matter which cross-sectional geom-
etry is considered. In fact, we can write

faRem

ðfaRemÞc

� �
1
¼ fRem

ðfReÞc
¼ fRew

ðfReÞc
lw

lm

¼ lw

lm

¼ Prw

Prm

ð19Þ

since it is fRew = (fRe)c = C, where C is a constant whose
value depends on the particular cross-sectional geometry
considered (Shah and London, 1978). Therefore, the
asymptotic values ½faRem=ðfaRemÞc�1 ¼ 1:�3, 1.2, 0.8 and
0:�6 are obtained for Pre/Prw = 1/2, 2/3, 3/2 and 2, respec-
tively, as shown in Figs. 9–11. Instead, for low values of
X+, the curves of the ratio faRem/(faRem)c for thermally
developing flows and simultaneously developing flows di-
verge, with the first one showing larger deviations from
unity. This can be justified considering that, in thermally
developing flows, only temperature dependent viscosity
and viscous dissipation are responsible for the deviations
of temperature and velocity distributions from those ob-
tained with constant property fluids, while, in simulta-
neously developing flows, their effects are marginal if
compared with those related to the evolution of the velocity
profile from uniform inlet conditions.

3.4. Velocity and temperature profiles

The differences between the local values of Nu/Nuc and
faRem/(faRem)c found for different values of the ratio Pre/
Prw can be explained taking into account velocity and tem-
perature distributions over the cross-sections. As an exam-
ple, to show the effects of temperature dependent viscosity,
radial profiles of the dimensionless axial velocity U ¼ u=�u
at selected axial locations are reported in Fig. 12(a) for
flows in circular microchannels with different values of
Pre/Prw and jBrmj = 0.1. Instead, to show the influence of
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viscous heating, the distributions of U are reported in
Fig. 12(b) for Pre/Prw = 2 (fluid heating) and Pre/
Prw = 1/2 (fluid cooling) and for all the Brinkman numbers
considered here. Similarly, the profiles of the dimensionless
temperature T = (t � tw)/(te � tw) at the same axial loca-
tions and for the same cross-sectional geometry are
reported in Fig. 13(a) for the considered values of Pre/
Prw and jBrmj = 0.1 and in Fig. 13(b) for Pre/Prw = 2 (fluid
heating) and Pre/Prw = 1/2 (fluid cooling) and for different
Brinkman numbers. In order to consider comparable situ-
ations, the dimensionless velocity and temperature profiles
reported in Figs. 12 and 13 refer to axial locations where
the bulk temperature tb coincides with the reference tem-
perature of the fluid tm, so that Tb = (tb � tw)/(te � tw) =
0.5. From Figs. 12(a) and 13(a) it is apparent that the
temperature dependence of viscosity has an important
effect on the velocity distribution but a rather weak one
on the temperature profile. On the contrary, as can be seen
in Figs. 12(b) and 13(b), viscous heating has an influence
that is significant on the temperature field, but negligible
on the velocity distribution. The explanation can be found
considering that temperature differences over the cross-sec-
tion of the channel caused by the application of wall ther-
mal boundary conditions are much larger that the local
temperature differences produced by viscous heating.

4. Conclusions

The effects of viscous dissipation and temperature depen-
dent viscosity both in thermally developing and hydro-
dynamically fully developed flows and in simultaneously
developing flows of liquids in straight microchannels of
arbitrary but constant cross-sections have been studied. In
order to allow a parametric investigation, viscosity has been
assumed to vary linearly with temperature, while the other
fluid properties have been held constant. Different cross-
sectional geometries have been considered, chosen among
those usually adopted for microchannels, namely circular,
rectangular with aspect ratio c = 0 (parallel plate channel)
and trapezoidal with c = 0.414. Reference has been made
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to uniform wall temperature boundary conditions. Numer-
ical results confirm that, in the laminar forced convection in
straight microchannels, both temperature dependence of
viscosity and viscous dissipation effects cannot be neglected
in a wide range of operative conditions.
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In: Kakaç, S., Shah, R.K., Aung, W. (Eds.), Handbook of Single-
Phase Convective Heat Transfer. Wiley, New York (Chapter 3).

Shah, R.K., London, A.L., 1978. Laminar Flow Forced Convection in
Ducts. Academic Press, New York.

Shen, P., Aliabadi, S.K., Abedi, J., 2004. A review of single-phase liquid
flow and heat transfer in microchannels. In: Proc. of the 2nd ICMM,
Rochester (NY), pp. 213–220.

Toh, K.C., Chen, X.Y., Chai, J.C., 2002. Numerical computation of fluid
flow and heat transfer in microchannels. Int. J. Heat Mass Transfer 45,
5133–5141.

Tso, C.P., Mahulikar, S.P., 1998. The use of the Brinkman number for
single phase forced convective heat transfer in microchannels. Int. J.
Heat Mass Transfer 41, 1759–1769.

Tunc, G., Bayazitoglu, Y., 2001. Heat transfer in microtubes with viscous
dissipation. Int. J. Heat Mass Transfer 44, 2395–2403.

Xu, B., Ooi, K.T., Mavriplis, C., Zaghloul, M.E., 2003. Evaluation of
viscous dissipation in liquid flow in microchannels. J. Micromech.
Microeng. 13, 53–57.

Zanchini, E., 1997. Effect of viscous dissipation on the asymptotic
behaviour of laminar forced convection in circular tubes. Int. J. Heat
Mass Transfer 40, 169–178.


	Effects of viscous dissipation and temperature dependent viscosity in thermally and simultaneously developing laminar flows in microchannels
	Introduction
	Mathematical model
	Numerical results
	Validation of the procedure
	Heat transfer results
	Pressure drop results
	Velocity and temperature profiles

	Conclusions
	Acknowledgement
	References


